Tag Archives: aging brain

Brain Gym: 16 Activities That Will Help Your Brain Stay Younger

Brain Gym for a healthy mind. A few years ago, we started to learn about the importance of training our brains. Today we know that in order to enjoy life to the fullest, our brain needs to be in shape as well. Find out the 16 brain gym exercises that will help your brain health.

Life expectancy has risen, and as we age, our brain starts deteriorating. A few good habits can help slow down cognitive aging and help keep the human brain in shape. In this article, we’ll talk to you about different brain gym strategies that will help you build new neural connections and boost your cognitive reserve. Lifestyle and our habits play an important role in the physical changes that our brains undergo. The sooner you start training your brain, the longer it will stay in shape. Sign up for your brain gym!

CogniFit Cognitive Brain Training adapts to your specific cognitive needs. Train your cognitive skills with this popular tool.

Is it really possible to improve a specific cognitive skill by training with a brain gym routine? Sometimes you may find yourself wondering if a brain gym routine will actually make it possible to improve our memory, planning, spatial orientation, processing speed, reasoning, creativity, etc. While there isn’t any magic recipe to keep cognitive aging at bay, you can start some exercises to slow it down and improve cognitive reserve. Take your brain seriously and try some of the brain gym exercises that we have below.

Brain Gym can your brain plasticity. The brain has the amazing ability to adapt and change depending on our experiences. Brain plasticity is what makes this adaptation easy, and is what allows us to help mold and adapt our brains to different circumstances or surroundings.

There is one notable type of brain plasticity, called functional compensatory plasticity, that causes a small group of elderly people to achieve almost the same amount or higher cognitive activity than their younger counterparts, despite their age. If we think of the average aging individual, we can expect their cognition to slowly decline as they age. However, in the case of functional compensatory plasticity, the brain actually compensates for the lack of cognitive activity, ultimately activating more brain parts than others of their own age or supposed cognitive state.

Brain gyms help the brain adapt, which we have shown is an essential part to brain health, especially as we age. Changing some simple habits and practicing mentally stimulating activities can help keep the brain active which makes it easier for the brain to create neurons and connections. Take a look at our suggestions and put them into action.

Brain Gym: 10 ways to keep your brain sharp

Exercising these powerful cognitive skills helps regenerate neural connections. Brain gyms can help slow down cognitive decline, which can delay the effects of neurodegenerative effects.

1. Brain gym while you Travel

Travelling stimulates our brains, exposes to new cultures and languages, and helps us learn about the history of a new place. According to a study, having contact with different cultures gives us the ability to learn about different cultures, which helps improve creativity and has important cognitive benefits.

Brain Gym: If you have the resources to travel, do it! Visit new places, emerge yourself in the culture, and learn from the natives. If you can’t travel, make an effort to surround yourself with different cultures and people, and visit new places right in your own city.

2. Brain gym while you Listen to music

Listening to music can be a great activity because music is a powerful stimulus for our brains. Certain studies have shown how listening to music activates the transmission of information between neurons, our ability to learn, and our memory. Listening to music can also slow neurodegenerative processes (this effect was only present in those who were familiar with music).

Listening to music can also positively affect our mood and activate almost all of our brain, which makes it a great way to stimulate the brain.

Brain Gym: You can add music to so many parts of your day. Turn on the radio when you’re cooking or driving in the car. Play your favorite “cardio” or “pump-up” playlist when you’re at the gym… and remember, it’s never too late to learn how to play an instrument! There are tons of video tutorials on YouTube that can help you get started.

3. Brain gym while enjoying nature

The best gym is being in nature. It helps us disconnect from our daily routines and obligations, and reduces stress and anxiety. According to this study, being in nature, whether it be out at a park or seeing trees from the window, helps reduce attentional fatigue. Living in areas with gardens or trees improves attention and inhibits our impulses. Being in nature also gets us moving and helps us increase the amount of physical exercise we do.

Brain Gym: Being in nature is good for our health and well-being. You don’t need to go live in the countryside to get these benefits- talking away in green areas, or even hanging some pictures of nature, can give us some of these benefits. Try to get away on the weekend and go to the mountain or beach. Find a great hiking route and make it a weekend activity. You’ll get some exercise and it’s a great brain gym!

4. Write things by hand and train your brain

Take handwritten notes rather than typing on a computer or tablet. Writing by hand is a brain gym exercise because it helps boost memory and learning, according to this study. Writing also helps us process and integrate learned information.

Brain Gym: Leave your laptop at home and get yourself a notebook. You can also think about getting a tablet that allows you to write and later turns your words into text.

5. Brain gym: Physical exercise

According to many studies like this one, doing and enjoying exercise created new neurons within our brain, improves learning, cognitive performance, and boosts neuroplasticity. A recent study established that starting physical exercise when there are already signs of dementia might not be that a beneficiary as starting while being completely healthy. Therefore, you should start exercising as soon as possible.

Brain Gym: According to studies, aerobic exercise is the best for us. Get out and run, dance, swim, skate, or even just walk around. Getting started can be difficult, but just think about the pay-off!

Brain gym and exercise

6. Brain gym: Keep your work area clean and organized

A recent study has shown that doing work that doesn’t challenge your brain, as well as working in an untidy environment, can actually cause damage to your brain health in the long-run.

Brain Gym: A clean work environment makes us feel calm, which allows our brain to work better. Throw out papers and things that you don’t need. Clean up your desk and the space around you.

7. Learn a language and exercise your brain

According to a study, speaking two or more languages helps protect from cognitive deterioration. The study discovered that bilingual people had a higher IQ and received higher points in the cognitive tests compared to others in their age group. This can happen even after learning a language as an adult.

Brain Gym: Sign up for a class in French or Spanish or Portuguese or any other language you’ve ever thought about learning! Try to watch movies in their original languages (with or without subtitles), you’ll start to pick up the sounds and your brain will get a great workout. Today, we have access to great resources online, all it takes is a little searching!

8. Brain gym: Sleep

According to a study, sleeping too much or too little is associated with cognitive aging. As an adult, it has been shown that less than 6 or more than 8 hours of sleep leads to worse cognitive scores as a consequence of premature aging in the brain.

The right amount of sleep is vital for the proper function of our bodies, as well as our well-being. Both sleeping too little and sleeping too much can have negative effects on cognitive performance, response time, recognizing errors, and attention.

Brain Gym: Try to keep an adequate sleep schedule by creating a routine. Try to go to sleep and wake up everyday at the same time. If your one of those people who tends to sleep too little, try going to bed a little earlier over time. Put your phone, TV, computer, etc. away at least 30 minutes before bedtime to reduce any symptoms of technological insomnia. Make sure your room is a comfortable temperature, there’s not too much light or sound coming in, and that your room is clean and ready to be slept in. Doing this can even help you become a morning person!

9. Brain Gym: Read

People who don’t read a lot have been shown to have lower cognitive performance compared to avid readers, according to a study. Those who don’t read often receive lower scores in processing speed, attention, language, and abstract processing.

According to researchers, this low performance in subjects who read little affects their brain’s ability to adapt after suffering from brain damage. More highly educated people use their brain’s resources to compensate for the cognitive deterioration due to aging. In others words, they have a higher level of functional compensatory plasticity, as we mentioned before. This can be applied the same was for people who read often.

Brain Gym: If you like to read, you’ve got it pretty easy. If you don’t like reading and it doesn’t appeal to do, don’t worry! There are tons of different genres to try out. You’ll find that some things are easier to read, like graphic novels. You can read magazines, newspapers, etc. about anything you like, and you’ll still get all the benefits of reading. It’s just a matter of keeping your brain active.

10. Brain gym: Practice yoga and meditation

Meditation can have long-term changes in your brain, according to this study. People who have been meditating for years have more gyri in the (ridges in the brain that are used in quickly processing information). This is also another proof of neuroplasticity, as our brain can adapt and change depending on our experiences.

According to another study, practicing yoga for 20 minutes improves speed and precision in working memory and inhibitory control (the ability to inhibit behavior when it’s necessary) tests. These measurements are associated with the ability to pay attention, and hold on to and use new information.

Yoga and meditation help us use our mental resources more efficiently, and helps us reduce stress and anxiety, which improves our performance.

Brain Gym: Meditation and yoga are “in” right now, so it shouldn’t be hard to find classes and get started. If you don’t want to go to a class, there are tons of instructors on YouTube to show you how to meditate and do yoga, without having to leave the house.

11. Brain gym: Eat well and avoid drugs

What we eat affects our brains. Eating well helps keep our brains young and prevents cognitive decline. We already know that there are “superfoods” can work together to help keep our bodies healthy. However, a diet of varied fruits, vegetables, beans, grains, and few processed foods, can also greatly improve our overall health. A healthy diet doesn’t only help prevent a large number of diseases caused by diet, but it also helps slow down physical and cognitive aging. Brain Gym comes also from the consumption of different nutrients. Watch below to discover how food affects your brain.

Alcohol, tobacco, and other drugs all contribute to an increased risk of suffering from different types of diseases and contributes to premature aging.

Brain Gym: If you want to learn how to eat well, you should talk to a nutritionist or doctor who can best guide you to the best diet for you. Don’t trust “miracle diets”, they don’t work and can be dangerous for your health. Choose fruits and vegetables over sweets and whole grains over white bread. Keep an eye on how much sugar and fat your eating, and cut out as much alcohol as possible. It can be hard to get started, but ask for stop smoking tips if you need it!

12. Brain Gym: Control your stress levels!

Take care of your mental health! Mental health issues and constantly thinking negatively affects our overall well-being. However, this study has shown that it also affects our brain in the long-term. Having suffered from depression or anxiety disorders increases the risk of having dementia.

Brain Gym: Control your stress levels with some relaxation techniques. Listening to relaxing music helps relieve stress, and practicing yoga or meditation can also help keep stress at bay. If you’re not sure if you have a mental health issue, get in touch with a mental health specialist.

13. Brain Gym: Try new things

New studies have shown that immersing yourself in new hobbies that require some kind of mental challenge helps improve and maintain cognitive function and can help prevent cognitive deterioration.

Brain Gym: Take the time to try to learn new things. It doesn’t matter if you’re good at them or not! The important thing is that you have fun and you challenge your brain. Try learning how to play chess, how to sew, take on a DIY project, draw, write, learn how to play an instrument, etc.

14. Brain Gym: Spend time with your family and friends

Social relationships stimulate our brains, which helps keep it active and younger for longer. Socializing also helps reduce stress and improves our mood, which helps with our overall mental health.

Brain Gym: Spend more time with your loved ones (especially those who transmit positivity), meet new people, make new groups of friends, etc.

15. Brain Gym: Use your brain whenever you can

“Use it or lose it”, kind of. The best way to make sure your brain keeps working the best that it can is to constantly use and challenge it. We have access to new technology, which makes our lives easier, but it also makes our brain lazy. Before, we had to make an effort to learn and remember something. Now, many tasks have become computerized, which makes our brains go on autopilot. Try to give your brain the chance to work before reaching for the calculator or the GPS or Google.

Brain Gym: Try to solve math problems without a calculator, limit how often you use your GPS, and try to remember information on your own.

Memorize a list of words. For example, try to memorize your grocery list before leaving the house and time how long it takes you to remember it.

In the following video, you’ll see how you can help your brain work well and stay young. We can help our brains create new neurons, even as adults. Sandrine Thuret explains how we can help create new neurons.

This post was originally written in Spanish by CogniFit psychologist Andrea Garcia Cerdan

Neuroimaging: What is it and how can it map the brain?

One of the ways psychology has progressed came from the use of various neuroimaging methods. In terms of experimental psychology history, neuroimaging started with the cognitive revolution. Many scientists realized that understanding the brain plays an enormous role in the external behavior.  Scientists also use neuroimaging methods and technique prevention, diagnosis and treatment for different neurological diseases.

Today we still do not have a clear cut picture of the whole brain in itself. Not every network has been mapped, but we have moved forward a substantial amount. The development of non-invasive and invasive neuroimaging methods and their use for research and medical purposes was a definite breakthrough.

Neuroimaging

Neuroimaging-What can we map?

When one thinks about the brain and the nervous system, one can think of many things to map. Of course, we have the brain itself, its parts and the functions of the anatomical functions. We have neuroimaging techniques who deal exactly with that. Despite the anatomy, however, there are many neuroimaging methods that try to look at things on a more microscopic level.

We have methods that can view the cortical areas of the brain. Other techniques look at cortical columns and different layers. We have methods that can record a single cell by itself. Going even further, we can look at the soma of the neuron, the dendrite and, separately the axons. We can even look at the synaptic connections between the two neurons.

Neuroimaging- Method Classification

Neuroimaging methods also do not just encompass the spatial resolution. We try to look into proteins, organelles, bacteria, mammalian cells, the brain of various species and, finally, human brains. Many neuroimaging methods also differ by the temporal resolution. They differ by how quickly they are able to detect an event that happens in the brain. These neuroimaging methods differ by milliseconds, seconds, minutes, hours and days. They also differ by the spatial resolution. Some methods can show anatomical structures well, while others cannot. Apart from that, the variety of the neuroimaging methods differs by how non-invasive and invasive they are.

If one can imagine, scientists use a lot more non-invasive neuroimaging methods in research. Not many regular participants agree to something that can potentially alter their brain functions. Medical practitioners are a lot more likely to use invasive neuroimaging methods in an attempt to treat certain diseases. Various patients with neurological diseases benefit on a daily basis from the invasive neurological methods. In some cases, the patients themselves are able to control the stimulating method.

Electrophysiological techniques

For many years now we know that neurons are able to generate electric potentials. We also know that the synaptic activity of the nervous matter is similar to a battery. It acts as an electric generator.

If we recall the first class in physiology we took, we can roughly remember the structure of the neuron. Words like the cell body or the soma, dendrites and an axon come to mind. Dendrites seem to be able to receive electrical signals. Axon sends electrical signals to the dendrite of the next neuron. The cell body combines the signals from the previous neurons. Then it sends another signal along the axon for the next neuron.

Within the neurons themselves, we are able to distinguish two different types of electrical activity.

1-Action potentials

The action potential is a very common concept that many students learn in their first class on the nervous system. The entire process happens for about 1 ms and culminates with the release of neurotransmitters in the end of the axons.

  • The stimulus from a previous neuron activates the voltage gates on sodium channels which will cause the influx of positively charged sodium to the cell.
  • This depolarizes the membrane. Sometimes the depolarization of the membrane is able to reach the threshold.
  • If that happens, a series of events happen in order to send the signal along the axon to the next neuron. This is what we call an action potential.
  • The potassium channels are still closed and since we have an influx of sodium, the membrane becomes more positive on the inside then it does on the outside.
  • After that, the channels for sodium close and, therefore, the influx of sodium stops as well.
  • That’s when the potassium channels stay open and the potassium comes out of the cell and makes the inside of the cell negative one more time. This repolarization of the neuron can lead to the overall voltage to be below the original resting potential
  • This happens due to the fact that the potassium channels stay open a little longer. This ends in hyperpolarization. During this period a new action potential cannot happen and this is what we call a refractory period of the neuron.
    • Scientists cannot record action potentials via surface electrodes. As of today, we are not able to record potentials from a single neuron. What we can record is the second type of electrical activity. We can, however, use intracranial electroencephalography (EEG) to measure them which happens to be an invasive technique.

2- Post-synaptic potentials

They last for hundreds of milliseconds and it is the addition of the potential from various neurons that happen at the same time. We are able to record the potentials together. Researchers can easily record these potentials from surface electrodes. Electroencephalography (EEG) can measure these types of potentials.

So, in the end, we are able to distinguish two principal types of neuroimaging methods that measure the electrical activity of the neuron.

Two principal types of electrophysiological techniques

  • Single-cell recordings
    • These recordings are able to measure a number of different action potentials every second. The electrodes will be place inside a single cell or nearby a neuron which makes the technique invasive.
    • This technique can be useful for researchers who want to understand how single cells work.
    • Due to the fact that this technique allows measuring single neurons, we are able to see how specific these cells are.
    • A paper published saying that single neurons were firing to Jennifer’s Aniston’s face and nobody else’s. This level of object recognition falls under very high-level vision neurons and the paper gained a lot of attention due to such a strange working of a single neuron. (1)
  • Event-related potentials (ERP)
    • These recordings get the summation of different electrical potentials for a variety of neurons (millions of them). This technique places electrodes on the skull, therefore, they are surface electrodes.

Electroencephalography & Event-Related Potentials (ERP)

Since we now know that the brain produces electrical potentials, we are able to measure them. Electroencephalography helps us do that. Scientists can place various electrodes on the surface of the scalp and then measure the bio-electrical activity that the brain produces. Event-related potentials (ERP) are the potentials from various neurons that happen as a result of different stimuli given by the scientist to the participant. Stimuli and the tasks that the researchers assign can range from motor, to sensory and cognitive.

So the scientists are able to measure where and when the neurons will spike as a result of a certain assigned stimuli. Researchers have been able to find various ERP components or similarly distributed neurons that fire at the same time. They found various ERP components related to language, visual attention, auditory components (famous concepts like the mismatch negativity) and many others.

Other neuroimaging methods

Magnetoencephalography (MEG)

Neuroimaging methods don’t just stop at measuring the electrical activity of the neurons. Another famous brain imaging technique is MEG – it records magnetic fields. Electrical currents that already occur in the brain generate magnetic fields. MEG is able to directly measure the brain function which is a huge advantage when comparing it with other techniques. Apart from that, it has very high temporal resolution and high spatial resolution which is one of the rarest things when it comes to brain research. Usually, neuroimaging methods are either higher in spatial resolution or in temporal resolution, not both.

MEG is non-invasive. Scientists are able to use it with other neuroimaging methods at the same time – like EEG. One big disadvantage of MEG comes from the fact that in order to get the magnetic fields, a special room that gets rid of other types of magnetic interference needs to be built. Due to this, the machine is quite costly, but one of the best methods for measuring brain activity as of today.

Other famous types of brain imaging do not measure direct brain activity, however, they have quite good spatial resolution and are often used for clinical and diagnostic purposes.

Positron Emission Tomography (PET)

This technique gives an image of brain activity, however, in order to produce that image radioactive material needs to be either inhaled or injected by the participant. The image will then be produced due to this radioactive material going to the areas of the brain that are active.

Computed Tomography Scan (CT Scan)

This technique is able to produce brain images as well. It is able to show the anatomy of the brain, however, not the functions themselves which are a serious drawback especially if we consider the fact that X-ray lights need to go through the head to produce the image.

Magnetic Resonance Imaging (MRI)

MRI – Neuroimaging

One of the most common techniques nowadays. It gives an image of anatomical structures in the brain. It is non-invasive, but the patient must remain still in the MRI chamber which could prove to be quite painful for those suffering from claustrophobia. Apart from that, any type of metallic devices cannot be put in the chamber so many patients and subjects are not able to get a scan.

Functional Magnetic Resonance Imaging (fMRI)

An upgrade from the MRI – this technique detects the blood-oxygen-level dependent contrast imaging (BOLD) levels in the brain which are the changes in the blood flow and it not only gives the anatomical structures but the functions as well. Various colors will change depending on which part of the brain is active. The big drawback with this technique is the fact that it does not directly measure brain activity, but BOLD signal so we cannot for sure say that the activity that we find via fMRI studies is fully accurate and is produced by neurons.

Diffusion Tensor Imaging (DTI)

A technique based on MRI and it measures the way the water can travel through the white matter in the brain. It can show the activity as the colored area on the image. It’s very good in detecting concussions so can be used in clinical applications which is a huge advantage. Again, it does not measure direct brain activity which is a huge disadvantage and sometimes it also distorts the images. DTI has a quite low spatial resolution.

Transcranial Magnetic Stimulation (TMS)

The electric field that TMS is able to generate is able to interfere with the action potentials that are happening in the brain. It’s a highly invasive technique and is able to be used in research applications for the workings of many diseases and pathologies. What we do know is that repetitive TMS is able to produce seizures so, obviously, it has some sort of side effects and needs to be used with caution.

Neuroimaging- New Developments in Neuroscience

New neuroimaging methods and brain imaging techniques are being developed nowadays and, perhaps, soon enough we will be able to not only map the entire anatomical structures of the brain but functions as well. As of right now, these are the majority of the neuroimaging methods that are used in cognitive neuroscience. Maybe, in a few years, we will be able to develop a low-cost neuroimaging technique that has both high spatial and temporal resolution and is non-invasive to the participants!

References

Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature [Internet]. 2005;435(7045):1102–7. Available from: http://www.nature.com.zorac.aub.aau.dk/nature/journal/v435/n7045/abs/nature03687.html%5Cnhttp://www.nature.com.zorac.aub.aau.dk/nature/journal/v435/n7045/pdf/nature03687.pdf